
Representing and analyzing change

in a formal modular speci�cation

V. Wiels and S. Easterbrook
fwiels,steveg@atlantis.ivv.nasa.gov

NASA/WVU Software Research Lab
100 University Drive, Fairmont WV 26554, USA

fax: 1 304 367 8211

Abstract. We are interested in the formal modeling of change requests
for large systems. In large systems development, changing requirements
are a fact of life. If formal methods are to be successfully applied in such
a context, they must be able to handle evolving speci�cations, to reason
about proposed changes, thus helping to validate the change requests.
In this paper we propose a method to represent change requests and
analyze their impact on the existing speci�cation. We use a category
theory based framework to specify the system in a modular way and to
analyze changes. The approach is applied to a software change request
for the Space Shuttle.

1 Introduction

We are interested in the formal modeling of change requests for large systems.
Very little attention has been paid in the formal methods community to the
management of change during systems development. Hence most case studies of
formal methods have concentrated on the use of a formal speci�cation as a base-
line from which designs and implementations can be veri�ed. In large systems
development, changing requirements are a fact of life. If formal methods are to
be successfully applied in such a context, they must be able to handle evolving
speci�cations, to reason about proposed changes, thus helping to validate the
change requests.

Structure is essential for managing large-scale speci�cations [4]. A well-chosen
structure greatly facilitates understanding and modi�cation of a speci�cation
[8]. Category theory has been proposed as framework for providing this struc-
ture, and has been successfully used to provide composition primitives in both
algebraic [14, 3] and temporal logic [6, 5, 11] speci�cation languages. Category
theory is ideal for this purpose, as it provides a rich body of theory for reason-
ing about objects and relations between them (in this case, speci�cations and
their interconnections). Also, it is suÆciently abstract that it can be applied to
a wide range of di�erent speci�cation languages. Finally, it lends itself well to
automation, so that, for example, the composition of two speci�cations can be
derived automatically, provided that the category of speci�cations obeys certain
properties (e.g. co-completeness).

Work on category theory for software speci�cation has typically adopted a
\correct by construction" approach: components are speci�ed, proved correct
and then composed together in such a way to preserve all their properties. This
kind of framework is too constraining and needs to be adapted and relaxed in
order to be able to handle changes. In [13], we propose some extensions to deal
with evolving speci�cations and especially the management of properties of such
speci�cations. But we also need to address the problem of actually representing
changes.

In this paper, we propose an approach to model changes in a modular formal
speci�cation and to analyze their impact on the existing speci�cation. We use a
new categorical framework proposed by Lopes and Fiadeiro in [7]. This frame-
work extends the classical notions of speci�cation and speci�cation morphism
by di�erentiating two kinds of properties for a component: axioms that are true
in any environment and co-axioms that depend on the collaboration of other
components of the system. This framework is very general and thus allows us to
consider di�erent interconnection models. We are using this framework to spec-
ify a system in a modular way and to represent changes and their relationships
with the existing speci�cation.

We apply our approach to a software change request for the Space Shuttle.
Space Shuttle change requests o�er an excellent testbed to explore the issues
raised by evolving speci�cations. The shuttle
ight software is an extremely well
documented system, where a complete set of revised speci�cations is available
for each version of the software, and the lifecycle of each change request is fully
documented.

The paper is organized as follows. Section 2 gives an overview of the approach.
Section 3 presents the Space Shuttle software and change requests. Section 4 gives
a user-oriented overview of the categorical framework. In section 5, the change
request is speci�ed and analyzed with this categorical framework. Section 6 gives
some conclusion and sketches avenues of future work.

2 Overview of the approach

As pointed out in [13, 8], dealing with changes is much easier with a structured
speci�cation. A well chosen structure helps to circumscribe the parts of the
speci�cation that must be modi�ed more easily and to evaluate the consequences
of the changes.

Category theory is very well suited to specify systems in a modular way.
In a typical category theory based framework, the speci�cation of a system
is a diagram with a speci�cation for each component and speci�cations and
morphisms representing the relationships between the components. The basic
diagram for two components is the following:

C1 C2

S0

m01
@

@
@I

m02
�
�
��

C12

�
�
��

@
@
@I

C1 and C2 are two components, S0, m01 and m02 specify the relationships
between them, and by applying a categorical operation called pushout to this
diagram, we get C12 which represents the composition of C1 and C2.

In classical category theory based frameworks, morphisms must preserve all
properties from the source speci�cation to the target one. This is a strong as-
sumption and Lopes and Fiadeiro argue in [7] that it needs to be relaxed to better
specify reactive systems. We also think that a relaxed framework is necessary to
represent and analyze evolving speci�cations. The framework proposed by Lopes
and Fiadeiro di�erentiate two kinds of properties for a component: axioms that
are true in any environment and co-axioms that depend on the collaboration
of other components of the system. The framework allows to consider di�erent
interconnection models and is very general.

This framework is
exible enough to deal with changes. In [7], an example
is given where a speci�cation is modi�ed and the new speci�cation is computed
from the old speci�cation and the change as shown on the left diagram below:

old change

S
@

@
@I

�
�
��

new

�
�
��

@
@
@I

old new

S
@
@
@I

�
�
��

This is an ideal case, the change is then just considered as a new component
added to the system. However, this solution is not possible in all cases. The
proposed change is, in some cases, contradictory with the existing speci�cation.
The change request presented in this paper is an example of such a change.

We claim that the categorical framework is still useful in those cases. We
propose to adopt an alternative approach: we consider the diagram on the right
in the �gure above. When we compute the pushout of this diagram in the relaxed
framework (with a suitable interconnection model), we obtain the part of the
old speci�cation that is compatible with the change. Moreover, by computing
the di�erence between the properties of the new speci�cation and the properties
in the pushout, we get the modi�cations that are not consistent with the old
behavior.

In the following, we present the approach in more details and apply it to a
software change request for the Space Shuttle.

3 SPACE SHUTTLE SOFTWARE AND CHANGE

REQUESTS

3.1 Space Shuttle software

As an operational vehicle, the Space Shuttle regularly needs updates to its
ight
software to support new capabilities (such as docking with the space station),
replace obsolete technology (such as the move to GPS for navigation), or to cor-
rect anomalies. Software updates are known as Operational Increments (OIs),
and are typically completed approximately every twelve to eighteen months. An
OI will implement any number of change request (CRs). A change request typ-
ically consists of a selection of pages from current Computer Program Design
Speci�cation (CPDS) and Functional Subsystem Software Requirements (FSSR)
speci�cations, with handwritten annotations showing new and changed require-
ments.

Each change request is reviewed by a number of requirements analysts, along
with members of the Independent Veri�cation and Validation team, culminating
in a formal requirements inspection. Following this inspection, the change request
may be rejected, revised for re-inspection, or forwarded to the review board for
inclusion in the current OI.

3.2 ECAL Change Request

The case study concentrated on change request #90724, the East Coast Abort
Landing (ECAL) automation CR. The change request covers changes needed to
automate the entry guidance procedures for an emergency landing at sites on
the East Coast or Bermuda, following a loss of thrust during launch, such that
orbit cannot be attained. The rationale for automating these procedures is that
it will reduce the costs of crew training, and increase the probability of successful
landing. The core functionality of the change request covers the management of
shuttle's energy during descent and the guidance needed to align it with the
selected runway.

Our approach is to model the old requirements in the FSSR �rst, and then
update this model to re
ect the changes listed in the CR. The ECAL change re-
quest a�ects seven speci�cations, but we chose to concentrate only on one FSSR,
namely STS-83-0001-27 \Entry Through Landing Guidance". The changes all re-
ferred to the phase G4.204 of the entry requirements, namely \Return-to-launch
site (RTLS) Terminal Area Management (TAEM) guidance". This represented
approximately two-thirds of the change request and was selected because it con-
tained the core of the new functionality.

3.3 RTLS guidance

The FSSR requirements for RTLS guidance are structured in functions. The
main function GREXEC is executed at each time cycle and calls 13 other func-
tions depending on the value of iphase (a variable representing the current guid-
ance phase). The di�erent functions exchange data between themselves and with

the environment. Each function is described by general requirements in natu-
ral language, detailed requirements in pseudo-code and tables giving the inputs,
outputs and constants of the function. Further details of these requirements will
be presented in section 5.

4 CATEGORICAL FRAMEWORK

Traditional categorical frameworks use a strong notion of morphism: a speci�ca-
tion morphism has to preserve all properties, meaning that when a component is
embedded in a system, it still has all the properties it had when considered alone.
This is a strong assumption and it is not always adapted to the speci�cation of
reactive systems. In [7], Lopes and Fiadeiro propose new notions of speci�cation
and speci�cation morphism. The behavior of a component is described by two
types of sentences: axioms and co-axioms. Axioms express properties that the
component always has, co-axioms give properties that are true when the com-
ponent is considered alone but that can depend on the collaboration of other
components when it is embedded in a system. Morphisms preserve axioms but
only re
ect co-axioms (i.e. resulting co-axioms are the properties on which all
the components agree).

We will use this framework to specify the system, but also to represent and
analyze change request on the system. In this section, we give a brief user-
oriented presentation of the framework. For more details about the theoretical
aspects, we refer the reader to [7]. It must also be noted that we use a �rst
order version of the framework and that we use a slightly di�erent notion of
morphism: the action part of their morphism is reversed, which can be useful
for certain type of interactions but makes the logic more complicated; we keep
the action mapping in the traditional direction, because it is suÆcient for the
system considered here. But this shows that the new framework can be adjusted
to the kind of system considered.

4.1 Speci�cations

A component of a system is described by a speci�cation. A speci�cation is a
triple < �;�; 	 >.

� =< DT;At;Ac > is a signature giving the vocabulary of the speci�cation.
DT gives the data types used in the speci�cation with their algebraic speci�ca-
tion. At is a �nite set of attributes, attributes are local to a component. Ac is
a �nite set of actions, to these actions is added the action ? representing idle
steps of the component, that is, the steps performed by the environment. During
these steps, the attributes cannot change values (encapsulation).

� is a set of axioms such that � � PROP (�). PROP (�) is the set of
properties � for �: � ::= ' j (init ! ') j (' ! [acs]'0), for acs � Ac, '; '0 2
STAT (�),
where STAT (�) is the set of state propositions: ' ::= (t1 = t2) j (:') j ('! '0)

where t1 and t2 are terms of same type.
[acs]' means that for each action ac in acs, ' is true after the execution of ac.

Properties capture invariants, initialisation conditions, e�ects of actions and
restriction to the occurrence of actions. More generally, properties concern local
features that will be preserved when the component is embedded in a system.

	 is a set of co-axioms such that 	 � CO�PROP (�). CO�PROP (�) is the
set of co-properties: ::= ' j ('!< ac > true) for ac 2 Ac and ' 2 STAT (�).
< ac > true means that the action ac can occur.

Co-properties capture the ability of actions to occur in certain states (readi-
ness). More generally, co-properties are not preserved when the component is
embedded in a system, they are only \re
ected". For example, for readiness
properties, a system is ready to execute an action only if all the components in-
volved in the execution of that action are ready to execute it (actions are global
and can be shared between several components).

4.2 Speci�cation morphisms

A signature morphism � from � =< DT;At;Ac > to �0 =< DT 0; At0; Ac0 >

is a triple < �DT ; �At; �Ac > where �DT : DT ! DT 0 is a classical algebraic
signature morphism (see [14, 3]), �At : At ! At0 is a mapping and �Ac : Ac !
Ac0 is a mapping. A signature morphism induces a translation on properties and
co-properties, denoted by �

�
as follows:

�
�
(�) ::= (�(t1) = �(t2)) j (:�

�
(')) j �

�
(')!�

�
('0) j init!�

�
(')

j �
�
(')! [�Ac(acs)]�

�
(') j �

�
(')!< �Ac(ac) > true

A speci�cation morphism � : S =< �;�; 	 >! S0 =< �0; �0; 	 0 > is a
signature morphism such that:

1. �0 j=�0 �
�
(�); �

�
(loc(�))

2. �0� \ STAT (�0); �
�
(); �

�
(env(�)) j=�0 	 0

where �0� = f� : �0 j=�0 �g; loc(�) is the locality property (expressing
that the attributes of a speci�cation cannot change value during idle steps);
and env(�) expresses the fact that the environment can always progress (idle
steps are always possible). �

�
(loc(�)) means that the actions added in the target

speci�cation cannot modify the attributes coming from the source speci�cation.
�
�
(env(�)) is 8ac 2 Ac0 � �(Ac); < ac > true.

A speci�cation morphism thus preserves all the axioms of the source spec-
i�cation and also preserves the locality of the source speci�cation. The rule is
di�erent for the co-axioms: a morphism only re
ects them, which means that
the co-axioms of the target speci�cation are the co-properties on which all the
components agree.

4.3 Interconnecting Speci�cations

Each component of a system is described by a speci�cation. Then the speci�ca-
tions are interconnected in the following way:

C1 C2

S0

m01
@

@
@I

m02
�
�
��

C1 C2

S0

m01
@
@
@I

m02
�
�
��

C12

�
�
��

@
@
@I

C1 and C2 are two components of the system. S0 contains the elements
shared by the two components, the morphisms m01 and m02 make the necessary
associations (and allow renaming).

The speci�cation of the system C12 is given by the pushout (for 2 compo-
nents) or colimit (for n components) of the resulting diagram. C12 is as follows:

{ the signature is the union of the two signatures of C1 and C2, but taking
into account that the intersection is de�ned by S0;

{ the axioms are the union of axioms from C1 and C2;

{ the co-axioms are the co-properties that can be proved from co-axioms of
C1 and from coaxioms of C2.

We can illustrate this on a very simple example:

C1 C2
Data : Bool Bool

Attr : at1; at2 : Bool at3; at4 : Bool
Act : ac1; ac2 ac3; ac4
Ax : init! :at2 ^ at1 init! :at3 ^ :at4

[ac1]at2 [ac3]at3
:at2! [ac2]false

Coax : at2!< ac2 > true :at4!< ac4 > true

:at2!< ac1 > true < ac3 > true

The axioms give initialization conditions, post-conditions of actions and cases
where the action cannot occur. Co-axioms give the readiness conditions for the
actions (for example ac2 can occur only when at2 is true while ac3 can occur at
any time).

S0 contains only bool and one action ac24 that is associated to ac2 by m01
and to ac4 by m02. The pushout is then:

C12
Data : Bool
Attr : at1; at2; at3; at4 : Bool
Act : ac1; ac3; ac24
Ax : init! :at2 ^ at1 ^ :at3 ^ :at4

[ac1]at2
[ac3]at3
:at2! [ac24]false

Coax : at2 ^ :at4!< ac24 > true

:at2!< ac1 > true

< ac3 > true

The two components are synchronised on the execution of actions ac2 and ac4
(which become one action ac24). The action ac24 represents the simultaneous
execution of ac2 and ac4. All axioms are preserved. Co-axioms are re
ected:
for example for the action ac24, the readiness condition is the one that can be
proved from the translation of both readiness conditions for ac2 and ac4.

Remark: it is important to notice that names are local to each component
and that two components can be associated only by means of morphisms, which
means that if there are two attributes with the same name a in C1 and C2 but
they are not identi�ed by S0, m01 and m02, there will be two di�erent attributes
in C12: C1.a and C2.a.

4.4 Dealing with shared attributes

The decomposition into axioms and co-axioms depends on the interconnection
model that is chosen. In what we presented before ([7]), attributes are local and
actions can be shared. Consequently, axioms concern local attributes (invariants,
e�ect of the action on attributes) and co-axioms deals with readiness conditions
of actions. The attributes cannot be changed by the environment while if an
action is shared, the resulting readiness condition must take into account the
readiness condition of all the components involved in this action.

However, the framework is general and other models of interconnection can
be considered provided that the decomposition into axioms and co-axioms is
changed accordingly. In the following, we will use the interconnection model
presented before, but also a di�erent interconnection model that allows us to
have shared attributes. In that case, invariants or e�ects of actions on attributes
are co-axioms.

5 SPECIFICATION OF THE SHUTTLE CHANGE

REQUEST

In this section, we �rst explain how to model the FSSR requirements in the cat-
egorical framework, then we propose an approach to manage the change request.

5.1 Speci�cation of one function

We take as a typical example one of the thirteen functions of the system. The
RTLS angle of attack command function (GRALPC) computes the angle of
attack for the alpha recovery phase (iphase=6) and the alpha transition phase
(iphase=4). It also computes an incremental normal acceleration value (dgrnz).
We give below an extract of the detailed requirements for this function:

If IPHASE = 6, the constant alpha recovery angle-of-attack command,

ALPCMD, as well as the altitude rate dependent incremental NZ

command, DGRNZ, for the load relief phase (IPHASE = 5) are computed

as shown in Equation Set 1.

1.1 If CONT=OFF then ALPCMD=ALPREC

1.2 If CONT=ON then ALPCMD=MIDVAL(ALPRECS MACH+ALPRECI,ALPRECU,ALPRECL)

1.3 If HDOT<HDMAX, then HDMAX=HDOT

Otherwise (HDOT>=HDMAX) execute Equation Set 1.3 for intact aborts

(CONT=OFF) or Equation Set 1.4 for contingency abort (CONT=ON)

1.3.1 DGRNZ=MIDVAL((HDNOM-HDMAX)DHDNZ, DHDLL, DHDUL)

1.3.2 DGRNZT=GRNZC1 + DGRNZ + 1.0

1.4.1 DGRNZT=MIDVAL(DNZB - HDMAX DHDNZ, DNZMIN, DNZMAX)

1.4.2 SMNZ1 = ZDT1 DGRNZT

1.4.3 DGRNZ=DGRNZT - GRNZC1 - 1.0

1.4.4 NZSW=GRNZC1-SMNZ1-SMNZ2+1.0

We do not give the rest of the requirements, they de�ne ALPCMD and
DGRNZ when IPHASE is di�erent from 6. The tables tell us that IPHASE,
CONT, HDOT, SMNZ2 and MACH are inputs; ALPCMD, DGRNZ, DGRNZT,
NZSW and SMNZ1 are outputs; and all the others are constants.

The speci�cation of GRALPC is as follows:

Data : Bool; Int; F loat; F lag
hdmax; hdnom; dhdnz; dhdll; dhdul; alprec; alprecs : F loat
dnzmin; dnzmax; alpreci; alprecl; alprecu : F loat

Attr : gralpc; ok : Bool; cont : F lag; iphase : Int
alpcmd; dgrnz; hdot;mach; smnz2; nzsw; smnz1; dgrnzt : F loat

Act : begin; end

imp cont(Bool); imp hdot(F loat;)imp iphase(Int); imp mach(F loat);
imp smnz2(F loat); exp smnz1(F loat); exp alpcmd(F loat);
exp dgrnz(F loat); exp nzsw(F loat); exp dgrnzt(F loat)

The data part gives the data types and the constants used by the component
(we have omitted the speci�cation of each data type for sake of conciseness).
The attributes part contains all the variables found in the requirements plus two
booleans (gralpc and ok) that will be used to specify the sequencing between
the di�erent functions of the system: gralpc is true when the function is being
executed, ok is true when the function has �nished its execution. The action
part contains an import action for each input variable, and export action for

each output variable and two actions begin and end representing the beginning
and end of the function.

Ax : init! :gralpc ; [begin]gralpc^ :ok ;
:gralpc! [imp cont(x); imp hdot(y); imp smnz2(y);
imp iphase(z); imp mach(y)]false ;

[imp cont(x)]cont = x ; [imp hdot(y)]hdot = y ;
[imp smnz2(y)]smnz2 = y ; [imp iphase(z)]iphase = z ;
[imp mach(y)]mach = y ;
cont = on ^ iphase = 6!
alpcmd = midval(alprecs �mach+ alpreci; alprecu; alprecl) ;

cont = off ^ iphase = 6! alpcmd = alprec ;
cont = off ^ iphase = 6 ^ hdot >= hdmax!
dgrnz = midval((hdnom� hdmax)dhdnz; dhdll; dhdul)
^ dgrnzt = grnzc1 + dgrnz + 1:0 ;

cont = on ^ iphase = 6 ^ hdot >= hdmax!
dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)
^ smnz1 = zdt1 � dgrnzt ^ dgrnz = dgrnzt� grnzc1� 1:0
^ nzsw = grnzc� smnz1� smnz2 + 1:0 ;

:::

:ok ! [end]false ; [end]:gralpc

The axioms part contains three di�erent kinds of properties:

{ axioms dealing with the beginning and end of the function: no action can
happen if gralpc is false (i.e. if the function is not being executed), the action
end is only possible when everything in the function has been done (i.e. ok
is true);

{ axioms concerning the import actions: the value of the input variables are
stored in local attributes;

{ axioms specifying the de�nition of the output variables from the input vari-
ables.

Coax : :gralpc!< begin > true

gralpc!< imp cont(x) > true

gralpc!< imp hdot(y) > true

gralpc!< imp smnz2(y) > true

gralpc!< imp iphase(z) > true

gralpc!< imp mach(y) > true

alpcmd = y !< exp alpcmd(y) > true

dgrnz = y !< exp dgrnz(y) > true

dgrnzt = y !< exp dgrnzt(y) > true

nzsw = y !< exp nzsw(y) > true

smnz1 = y !< exp smnz1(y) > true

ok !< end > true

The co-axioms give the readiness conditions of the actions. The begin action
can occur if the function is not already being executed, the import actions can

occur if the function is being executed, the export actions can export a value
if the variable has this value and the end action can occur if everything in the
function has been executed.

5.2 Speci�cation of the system

GRALPC has several interactions with the other components of the system: it
imports data from and exports data to other functions; and it synchronises with
GREXEC for sequencing.

For example, GRALPC exports dgrnz to two other functions called GRTRN
and TGNZC. Two subspeci�cations are thus de�ned between GRALPC and
GRTRN on one hand and GRALPC and TGNZC on the other hand. Each spec-
i�cation contains an action com dgrnz(F loat) that is associated to exp dgrnz
in GRALPC and to the corresponding imp dgrnz in GRTRN and TGNZC. This
will induce two actions in the resulting system representing the communication
of the value of dgrnz from GRALPC to GRTRN and from GRALPC to TGNZC.

The sequencing of functions is handled in the following way: the GREXEC
speci�cation has begin X and end X actions for each function X and describes
how the functions are sequenced. The speci�cation of each function X has cor-
responding begin and end actions (see for example GRALPC). The actions are
synchronised as shown below:

Function X GREXEC

end-X

beg-Xbegin

end

S

beg-X

end-X

Finally, all the components and their interactions (subspeci�cations and mor-
phisms) form a diagram, the colimit of this diagram can be computed: it is a
speci�cation describing the whole system.

5.3 CR for GRALPC

In the requirements, two cases are taken into account: intact aborts (CONT
= OFF) and contingency aborts (CONT = ON). In the CR, we now have to
consider three cases: intact aborts (CONT = OFF), contingency aborts (CONT
= ON and ECAL = OFF) and ECAL aborts (CONT = ON and ECAL = ON)
where ECAL is a new input of the system.

For example, in GRALPC, the de�nition of dgrnzt is di�erent for ECAL
aborts. The change request for the part of the requirements given before is as
follows:

Renumber 1.4.2, 1.4.3 and 1.4.4 respectively 1.4.4, 1.4.5 and 1.4.6

and insert the following:

1.4.2 If (ECAL=ON and ABS(DPSAC)>DPSAC1 and DGRNZT<DNZMX1)

then ITGTNZ=ON

1.4.3 If ITGTNZ=ON then DGRNZT=DGRNZT+DNZ1

where ECAL and DPSAC are new inputs, ITGTNZ is a new output and
DPSAC1, DNZMX1 and DNZ1 are new constants of GRALPC.

5.4 Management of the CR

Now we have speci�ed the system in a modular way, we want to represent the
CR and to get some information about its consequences with respect to the
current version of the system. We �rst handle the CR at the component level,
then consider the system level.

For GRALPC, the change request is contradictory with the existing require-
ments. In the FSSR requirements, if cont is on and iphase is equal to 6 and hdot
is greater or equal to hdmax, then dgrnzt is always equal to midval(dnzb �
hdmax � dhdnz; dnzmin; dnzmax). In the new version of the GRALPC func-
tion, this is only true if itgtnz is off . There is thus no way we could de�ne a
speci�cation which, composed with the old GRALPC speci�cation, would de-
scribe the new requirements for GRALPC.

But we can still use the categorical framework to get some information about
the consequences of the change on the existing component, about the potential
inconsistencies between the CR and the existing speci�cation. We are going to
compute the pushout of the two versions of the component, but to do so, we
need to consider what is shared and thus what is the decomposition in axioms
and co-axioms.

If we consider the two versions of a component in the case of the shuttle CR,
we see that they have a lot of elements in common and we notice that they share
attributes. So we have to consider the interaction in a di�erent way and con-
sequently change the decomposition in axioms and co-axioms. Some attributes
are not local any more, they can be shared and so the axioms concerning these
attributes become co-axioms.

And with this con�guration, when we compute the pushout of the two ver-
sions of the component, the result gives us the part of the old version that is
compatible with the change.

We can see in more details how this works on the example of the GRALPC
function. The speci�cation of the new function is as follows:

Data : old data� dpsac1; dnz1; dnzmx1 : F loat
Attr : old attr � dpsac : F loat; ecal; itgtnz : F lag
Act : old act� imp ecal(F lag); imp dpsac(F loat); exp itgtnz(F lag)
Ax : old ax

	 cont = on ^ iphase = 6 ^ hdot >= hdmax!
dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)

� cont = on ^ iphase = 6 ^ hdot >= hdmax ^ itgtnz = off

! dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)
cont = on ^ iphase = 6 ^ hdot >= hdmax ^ itgtnz = on

! dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax) + dnz1
cont = on ^ iphase = 6 ^ hdot >= hdmax

^ ecal = on ^ abs(dpsac) > dpsac1
^midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax) < dnzmx1
! itgtnz = on

Coax : old coax
� gralpc!< imp ecal(x) > true

gralpc!< imp dpsac(y) > true

itgtnz = x!< exp itgtnz(x) > true

We want to compute the pushout of the two versions of GRALPC in order to
get some information about their compatibility. To do so, we have to de�ne the
subspeci�cation S0. S0 contains the elements common to the two speci�cations,
which is in fact the signature of the old GRALPC speci�cation. But if attributes
are shared as well as actions, the decomposition in axioms and co-axioms has to
be rede�ned, and we end up in fact with only co-axioms on both side. Hence,
when we compute the pushout, we get the coaxioms the two speci�cations agree
on. For GRALPC, we can look at the formulas de�ning dgrnzt.

In the old speci�cation, dgrnzt is de�ned as follows:
cont = off ^ iphase = 6 ^ hdot >= hdmax! dgrnzt = grnzc1 + dgrnz + 1:0
cont = on ^ iphase = 6 ^ hdot >= hdmax!
dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)

In the new speci�cation, we have:
cont = off ^ iphase = 6 ^ hdot >= hdmax! dgrnzt = grnzc1 + dgrnz + 1:0
cont = on ^ iphase = 6 ^ hdot >= hdmax ^ itgtnz = off

! dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)
cont = on ^ iphase = 6 ^ hdot >= hdmax ^ itgtnz = on

! dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax) + dnz1
In the resulting pushout, we get:

cont = off ^ iphase = 6 ^ hdot >= hdmax! dgrnzt = grnzc1 + dgrnz + 1:0
cont = on ^ iphase = 6 ^ hdot >= hdmax ^ itgtnz = off

! dgrnzt = midval(dnzb� hdmax � dhdnz; dnzmin; dnzmax)
So the pushout gives us the part of the old speci�cation that is compatible

with the change. What is even more interesting is that, by making the di�erence
between the axioms in the new speci�cation and the axioms in the pushout, we
get the modi�cations that are not consistent with the old behavior.

In some cases, it is normal to �nd inconsistencies (in the CR presented here
for example). It is however very interesting to be able to identify precisely the
di�erences. This can furthermore be very useful for the veri�cation of properties:
it helps determining which properties are still true in the new system, which ones
are to be re-proved.

Moreover, by using this method, we can also analyze the relationships (and
�nd inconsistencies) between di�erent consecutive versions of a change request
or between several change requests concerning the same component. Finally,
the shared speci�cations together with the morphisms provide traceability: any
element of the signature can be traced throughout the di�erent versions using
the morphisms.

5.5 CR for the system

We now have to consider the CR at the system level.

The system is represented by several interconnected component speci�ca-
tions. Each component speci�cation can be a�ected by the CR as explained
above, but the interconnections can be a�ected too. It can result in new inter-
connections between components or in modi�cations of the existing interconnec-
tions.

For example, the modi�ed version of GRALPC has new inputs and new out-
puts: DPSAC is a new input coming from the GTP function, GRALPC had
previously no links with GTP, so we have to create a new subspeci�cation be-
tween GRALPC and GTP to represent this.

We end up with a two dimensional framework: the system level describes the
components of the system and their interconnections, the colimit can be com-
puted to get the system speci�cation; then for each component (and intercon-
necting speci�cation) there can be several di�erent versions of the speci�cation
(CR level) as shown on the following �gure:

C1v1

S1v12

C1v2

C1v3

S1v23

C2v1

S2v12

C2v2

S2v23

C2v3

S12v1

S12v2

S12v3

The two levels are independent and have di�erent interconnection models: at
the system level, attributes are local and only actions can be shared; at the CR
level, everything can be shared. This results in di�erent decompositions in axioms
and co-axioms for each component depending on the level that is considered.

Some practical problems still need to be addressed. First, we have to be able
to consider the two levels independently and to change the decomposition into
axioms and co-axioms according to the level. A solution could be:

{ to ask the user to de�ne an interconnection model for each level (i.e. to
identify the elements of the signature that can be shared by di�erent com-
ponents);

{ to divide the di�erent possible kinds of logic formulas in properties and co-
properties, according to the interconnection model;

{ and to consider the adequate decomposition in axioms and co-axioms for
each level.

We also need to think of the practical management of the two levels: how
to store and access to the di�erent speci�cations and the results of the opera-
tions: colimit to get the system speci�cation, pushout between two versions of a
component.

We are planning to extend an existing tool called Moka [12]. Moka encodes
general notions of category theory in ML (following [10]) and also implements
temporal logic speci�cations, the associated morphisms and all the colimits of
this category. Moka can thus handle the system level, but needs to be extended
to deal with the CR level. It also needs to be adapted to the new notions of
speci�cation and morphism.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a formal way of representing and analyzing
changes for large systems. We have applied this approach to a change request
for the Space Shuttle guidance software. We use a category theory based frame-
work to specify the system and to represent and analyze changes. First the fact
that the speci�cation is structured and modular is important in large systems
for understanding, validation and modi�cation. Furthermore, the categorical op-
erations are not only useful to compute the speci�cation of the system but also
to analyze changes and detect inconsistencies. Finally, we have only applied the
approach to one kind of change and other applications are needed to assess the
adequacy of the approach to other types of change; but the framework used here
(and de�ned in [7]) is very general and we believe it can be adapted to di�erent
kinds of systems and interconnection models.

We are now planning to work on the implementation of such an approach.
We �rst need to extend Moka to deal with the categorical aspects of the frame-
work. The tool can be extended to handle the new notions of speci�cation and
morphisms. An interesting problem is to �nd a construction for the pushout
(computation of the new co-properties). The other aspect to take into consider-
ation at the implementation level is the practical management of the di�erent
versions of a component and of a system as mentioned in section 4. An interesting
tool concerning these aspects is presented in [9].

Future work also includes veri�cation and validation of evolving speci�ca-
tions. We want to combine the extensions proposed in [13] to handle properties
of evolving speci�cations with the approach presented here. We would also like
to further study how to know if a property is preserved or has to be reproved in
the new version of the system; and how to reuse the proof of a property.

Finally, we are interested in the use of category theory based frameworks for
inconsistency tracking [1] and formalisation of viewpoints [2].

References

1. S. Easterbrook, J. Callahan, and V. Wiels. V&V through inconsistency tracking
and analysis. In Proceedings of IWSSD 98, International Workshop on Software

Speci�cation and Design, 1998.
2. S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency management.

Software Engineering journal, 11:31{43, 1996.
3. H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1, volume 6 of

EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.
Equations and initial semantics.

4. H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 2, volume 21
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.
Modules speci�cations and constraints.

5. J. Fiadeiro and T. Maibaum. Temporal theories as modularisation units for con-
current system speci�cation. Formal Aspects of Computing, 4(3):239{272, 1992.

6. J. Goguen and R. Burstall. Institutions: abstract model theory for speci�cation
and programming. Journal of the ACM, 1(39), 1992.

7. A. Lopes and J. Fiadeiro. Preservation and re
ection in speci�cation. In M. John-
son, editor, Algebraic Methodology and Software Technology 97, volume 1349 of
LNCS. Spinger Verlag, 1997.

8. S. Miller and K. Hoech. Specifying the mode logic of a
ight guidance system in
CoRE. In Proceedings of FMSP 98, Formal Methods in Software Practice, 1998.

9. F. Pinheiro and J. Goguen. An object-oriented tool for tracing requirements. IEEE
Software, march 1996.

10. D. Rydeheard and R. Burstall. Computational Category Theory. International
Series in Computer Science. Prentice Hall, 1988.

11. C. Seguin and V. Wiels. Using a Logical and Categorical Approach for the Valida-
tion of Fault-tolerant Systems. In Proceedings of FME'96, volume 1051 of Lecture
Notes in Computer Science. Springer-Verlag, 1996.

12. V. Wiels. Modularit�e pour la conception et la validation formelles de syst�emes.
PhD thesis, ENSAE, 1997.

13. V. Wiels and S. Easterbrook. Management of evolving speci�cations using category
theory. In Proceedings of Automated Software Engineering'98, 1998.

14. M. Wirsing. Algebraic speci�cation. In Handbook of theoretical computer science,

Formal Models and Semantics, volume B, pages 675{788. Elsevier and MIT Press,
1990.

